

GPR40 agonist

BI-2081

Table of contents

Summary	. 2
Chemical Structure	
Highlights	. 3
Target information	. 3
In vitro activity	. 4
In vitro DMPK and CMC parameters	
In vivo DMPK parameters	. 5
In vivo pharmacology	. 6
Negative control	
Selectivity	
Reference molecule(s)	. 7
Supplementary data	. 8
References	. 8

Summary

BI-2081 is a GPR40 agonist with a high *in vitro* potency (EC₅₀ = 4 nM) and a good *in vitro* and *in vivo* PK profile.

Chemical Structure

Figure 1: 2D structure of BI-2081, a potent GPR40 partial agonist.

Figure 2: BI-2081, 3D low energy conformation.

Highlights

BI-2081 is a partial agonist on GPR40 with a good *in vitro* potency (EC $_{50}$ = 4 nM). The activation of GPR40 allows a glucose depending insulin secretion and BI-2081 significantly reduces the plasma glucose concentration in Zucker Diabetic Fatty (ZDF) rats. This mode of action allows a high anti-hyperglycemic efficacy with low risk for hypoglycemia. BI-2081 possesses a good *in vitro* and *in vivo* PK profile, which makes an oral application with high bioavailability possible. The structural related BI-0340 is a suitable negative control due to its significant lower potency on GPR40.

Target information

The GPR40, also known as Free Fatty Acid receptor 1 (FFA1), is a member of the rhodopsin family of G-protein coupled receptor and it interacts predominantly with the $G\alpha_q$ subunit¹. The receptor is related to other fatty acid receptors (i.e. GPR43/FFA2 and GPR41/FFA3) and shares an overall sequence homology of up to 50% with this family². GPR40 is highly expressed in the β -cells of the pancreas. Additionally, it can be found in the brain and the GI tract³. The receptor is activated by medium to long chain saturated and unsaturated fatty acids (C₁₂-C₂₀). Activation of GPR40 leads to an increase of intracellular Ca²⁺ concentrations via the IP₃ pathway and stimulates the insulin release in the presence of glucose. GPR40 agonist should have a low risk of hypoglycemia due to this glucose-stimulated insulin secretion (GSIS)⁴.

Figure 3: Structure of GPR40 with an agonist related to BI-2081, as revealed by X-ray crystallography (PDB code: 4HPU).

In vitro activity

BI-2081 is a partial agonist on GPR40 and shows a high cellular potency in the human IPOne assay (EC_{50} = 3-5 nM). The plasma shift with 4.5% HSA on the human GPR40 is fourfold with BI-2081. The cellular potency of BI-0340 (EC_{50} = 1230 nM) on the human GPR40 receptor is more than 200-fold lower compared to the probe BI-2081.

PROBE NAME / NEGATIVE CONTROL	BI-2081	BI-0340
MW [Da, free base] ^a	534.6	568.7
Ki hGPR40[nM]	23	-
IPOne (EC ₅₀) human [nM] ^{b/c}	5/3	1230/-
IPOne (EC ₅₀) rat [nM] ^{b/c}	302/20	3630/-
IPOne (EC ₅₀) mouse [nM]°	31	-
IPOne (EC ₅₀) dog [nM]°	6	-
IPOne (EC ₅₀) cyno [nM] ^b	76	-

^a For the salt form you will get, please refer to the label on the vial and for the molecular weight of the salt, please refer to the FAQs

In vitro DMPK and CMC parameters

BI-2081 has a good permeability and a high plasma protein binding. It displays a high stability in microsomes over all tested species, but seems to have a lower stability in hepatocytes. However, this *in vitro* result does not correlate to the low clearance *in vivo* which was observed in several species.

PROBE NAME / NEGATIVE CONTROL	BI-2081	BI-0340
logD @ pH 7.4	3.9	2.6

 $^{^{\}mathrm{b}}$ Stimulation of 1321N1 cells, which express the GPR40 receptor, followed by measurement of the IP1 accumulation by fluorescence

[°] Stimulation of 1321N1 cells, which express the GPR40 receptor, followed by measurement of the IP1 accumulation by fluorescence. Differs mainly from assay **a** by different cell preparation and LiCl containing stimulation buffer. More detailed information can always be obtained via the "Contact us" formular

Solubility @ pH 6.8 [µg/mL]	28	100
Caco-2 permeability AB @pH7.4 [*10 ⁻⁶ cm/s]	65.2	4.1
Caco-2 efflux ratio	1.2	1.6
Microsomal stability (human/rat/dog) [% QH]	<23 / <22 / <20	61 / >88 / n.a.
Hepatocyte stability (human/rat/dog) [% QH]	90 / 67 / 94	n.a.
Plasma Protein Binding (human/rat/dog) [%]	>99.7 / >99.8 / >99.7	n.a.
hERG [inh. % @ 10 μM]	22	n.a.
CYP 3A4 (IC ₅₀)[μM]	40	n.a.
CYP 2C8 (IC ₅₀)[μM]	5.4	n.a.
CYP 2C19 (IC ₅₀)[μM]	>50	n.a.
CYP 2D6 (IC ₅₀)[μM]	>50	n.a.
MBI 3A4 (25 μM) [%Ctrl]	92	n.a.

In vivo DMPK parameters

BI-2081 possesses high bioavailability and overall good PK profiles in several species. The observed *in vivo* clearance is low despite the *in vitro* measured low stability in hepatocytes.

BI-2081	RAT
Clearance [%Q _H]	3.1
Mean residence time after i.v. dose [h]	3.9
$C_{max}[nM]^a$	930
t(h)	1.2
F[%]	79
V _{ss} [L/kg]	0.7

^ai.v. dose: 0.5mg/kg ^bp.o. dose: 5 mg/kg

In vivo pharmacology

An acute oral glucose test (oGTT) in male Zucker Diabetic Fatty (ZDF) rats was performed with BI-2081. We observed a strong glucose lowering effect as well as an increase of the plasma insulin level compared to the untreated ZDF rats. The compound reduced the glucose level in this disease-related model by 71% (AUC $_{0.180\,\text{min}}$) with ED $_{50}$ = 0.7 mg/kg and ED $_{100}$ around 10 mg/kg. No significant change of the plasma glucose level was observed in GPR40 KO mice compared to the WT, which shows the on-target-related specificity. Another study on normal fasting rats showed that there was no significant difference in glucose levels between BI-2081 treated rats and the control group, supporting the low risk of hypoglycemia due to the glucose-dependent mode of action on GPR40.

We observed a significant lowering of HbA1c (Δ HbA_{1c} = -1.8%) after treating male ZDF rats with BI-2081 in a subchronic 30 day study (10 mg/kg b.i.d.). We could additionally observe in the same study that BI-2081 lowers plasma lipids such as total cholesterol (39%), triglycerides (25%) and free fatty acids (34%). The body weight of the treated rats was reduced by 14% after 30 days without any effect on food consumption.

IN VIVO STUDY	OBSERVED EFFECT	
oGTT in 8-10 old male ZDF rats	$ED_{50} = 0.7 \text{ mg/kg}$ $Estimated ED_{100} = \sim 10 \text{ mg/kg}$ $E_{max} = 71\% \text{ Inhibition (AUC}_{0-180 \text{ min}})$	
subchronic study male ZDF rats: 10 mg/kg bid, 30 day	ΔHbA _{1c} = -1.8% ΔPlasma Cholesterol = -39% ΔPlasma Triglycerides = -25% ΔFree Fatty Acids = -34% ΔBody Weight = -14%	

Negative control

The negative control BI-0340 has a similar structure to BI-2081, but it is more than 00-fold less potent on human GPR40 compared to BI-2081 in the IPOne assay.

Figure 4: BI-0340 which serves as a negative control

Selectivity

The selectivity profile for BI-2081 was tested in SafetyScreen44TM. BI-2081 had an affinity towards adrenergic α_{2A} ($K_i = 1.3 \, \mu\text{M}$), histamine H₁ ($K_i = 3.1 \, \mu\text{M}$), CysLT1 (69% inh. @ 10 μM) and thyroid hormone (rat, $K_i = 3.5 \, \mu\text{M}$).

Negative control BI-0340 hits 1 from 44 in SafetyScreen44^M (GCORTICOID/H > 50% at 10 μ M).

SELECTIVITY DATA AVAILABLE	BI-2081	BI-0340
SafetyScreen44™ with kind support of curofins	Yes	Yes
Invitrogen®	No	No
DiscoverX®	No	No
Dundee	No	No

Reference molecule(s)

Fasiglifam hemihydrate (TAK875).

Supplementary data

Selectivity data can be downloaded free of charge from opnMe.

References

- 1. Surgand J.-S., Rodrigo J., Kellenberger E., Rognan D. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors *Proteins* **2006**, 62(2), 509–538. DOI: 10.1002/prot.20768, PubMed: 16294340.
- Costanzi S., Neumann S., Gershengorn M. C. Seven transmembrane-spanning receptors for free fatty acids as therapeutic targets for diabetes mellitus: Pharmacological, phylogenetic, and drug discovery aspects *J Biol Chem* 2008, 283(24), 16269–16273.
 DOI: 10.1074/jbc.R800014200, PubMed: 18385136.
- 3. Khan M. Z., He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain Neuropharmacology **2017**, 113(Pt B), 639–651. DOI: 10.1016/j.neuropharm.2015.05.013, PubMed: 26005184.
- 4. Poitout V., Lin D. C.-H. Modulating GPR40: Therapeutic promise and potential in diabetes *Drug Discov Today* **2013**, 18(23-24), 1301–1308 DOI: 10.1016/j.drudis.2013.09.003., PubMed: 24051395.

