

GSK-3 inhibitor

BI-5521

Table of contents

Summary	2
Chemical Structure	
Highlights	3
Target information	3
In vitro activity	4
In vitro DMPK and CMC parameters	4
In vivo DMPK parameters	5
In vivo pharmacology	6
Negative control	7
Selectivity	7
Co-crystal structure of the Boehringer Ingelheim probe compound and the target protein	8
References molecule(s)	8
Supplementary data	8
References	8

Summary

BI-5521 is a potent and selective ATP-competitive small molecule inhibitor of glycogen synthase kinase 3 (GSK-3) with demonstrated *in vivo* activity. The *N*-alkylated derivative BI-4481 is also available as negative control.

Chemical Structure

Figure 1: 2D structure of BI-5521, a potent and selective GSK-3 inhibitor

Figure 2: BI-5521, 3D conformation

Highlights

BI-5521 is a highly potent and selective non-covalent ATP-competitive inhibitor of glycogen synthase kinase $(GSK-3)^1$. It is similarly active on both GSK-3 isoforms $(GSK-3\alpha)$ and β) with single-digit nanomolar potency and has demonstrated glucose-lowering efficacy in both acute and subchronic settings in rodents. This compound has a decent PK profile *in vivo* and may be a useful tool for the validation of GSK-3 as a therapeutic target.

Target information

Glycogen synthase kinase (GSK-3) is a constitutively active serine/threonine kinase that phosphorylates a large number of proteins in a variety of different pathways. In mammalian tissues, GSK-3 exists as two isoforms (GSK-3 α and GSK-3 β) that share 98% homology of their kinase domains. GSK-3 β has been implicated in various diseases such as diabetes, inflammation, cancer, amyotrophic lateral sclerosis (ALS), Alzheimer's and Parkinson's diseases, and bipolar disorders²⁻⁵. Moreover, GSK-3 inhibitors serve as tools for regenerative medicine through increasing self-renewal and/or differentiation of stem cells⁵.

Figure 3: Crystal structure of GSK-3 complexed with BI-91BS, a close analog of BI-5521 (PDB code 6GJO).

In vitro activity

BI-5521 inhibits GSK-3 β with an IC₅₀ of 1.1 nM. The *N*-Ethyl analog BI-4481, which can be used as a negative control, shows an activity of >10,000 nM in this assay.

PROBE NAME / NEGATIVE CONTROL	BI-5521	BI-4481
MW [Da, free base] ^a	419.5	448.5
Inhibiton of GSK-3β (IC ₅₀) [nM] ^b	1.1	>10,000
Inhibiton of GSK-3α (IC50) [nM]°	2.0	n.d.
Inhibiton of GSK-3β (DC50) [nM]°	5.0	n.d.
Stimulation of Glycogen Synthesis rate in C3A cells (EC ₅₀) [nM]	3.0	n.d.
Cytotoxicity (IC ₅₀) [nM] ₅₀ °	390	>50,000

^a For the salt form you will get, please refer to the label on the vial and for the molecular weight of the salt, please refer to the FAOs

In vitro DMPK and CMC parameters

BI-5221 is a permeable but poorly soluble tool compound with moderate microsomal stability. Efforts to improve the solubility led to the discovery of BI-4481, the negative control.

PROBE NAME / NEGATIVE CONTROL	BI-5521	BI-4481
logD @ pH 11	2.2	3.4
Solubility @ pH 6.8 [µg/mL]	76	90
Caco-2 permeability AB @ pH 7.4 [*10 ⁻⁶ cm/s]	10.3	30.1
Caco-2 efflux ratio	4.6	0.7
Microsomal stability (human/mouse/rat) [% Q _H]	26 / 48 / 35	52 / >88 / 83
CYP 3A4 (IC ₅₀) [μM]	>50	n.a.

^b Inhouse assay: recombinant human GSK-3 was incubated with ³³P-ATP and a 21 AA-peptide from Glycogen Synthase bearing the phosphorylation sites for GSK-3. The radiolabelled P-GS peptide was absorbed using a filter and was quantified in a counter. ^cIn vitro cytotoxicity assay using the U937 cell line and the colorimetric EZ4U assay.

CYP 1A2 (IC ₅₀) [µM]	>50	n.a.
CYP 2C9 (IC ₅₀) [µM]	>50	n.a.
CYP 2C19 (IC ₅₀) [μM]	12.9	n.a.
CYP 2D6 (IC ₅₀) [µM]	>50	n.a.

In vivo DMPK parameters

Pharmacokinetic parameters of BI-5521 in rats

BI-5521	RAT
Clearance [mL/min/kg]ª	32
Mean residence time after <i>i.v.</i> dose [h] ^a	2.9
t _{max} [h] ^b	4
C _{max} [nM] ^b	15.5
V _{ss} [L/kg] ^a	5.6
F[%]	17

^a *i.v.* dose: 4.2 mg/kg ^b *p.o.* dose: 0.42 mg/kg

In vivo pharmacology

BI-5521 showed acute efficacy in ZDF rats.

Figure 4: Decreased plasma glucose levels during an oral glucose tolerance test in ZDF rats

BI-5521 showed subchronic efficacy in db/db mice

Figure 5: Decreased plasma glucose levels over 4 weeks in db/db mice.

Negative control

The N-Ethyl analog BI-4481 can be used as negative control (IC50 GSK-3β > 10,000 nM).

Figure 6: BI-4481 serves as a negative control.

Selectivity

BI-5521 is similarly active on both isoforms GSK-3 α and GSK-3 β . Selectivity against other protein kinases:

- No selectivity against DYRK1A (99% inhibition @500 nM)
- ≥100fold selectivity against CDK2/CyclinA, MAP3K7_K7IP1, MAPKAPK1A, ROCK1
- >1000fold selectivity against all other targets tested

Selectivity against non-kinase targets:

• >500 fold selectivity against all targets of a 62 target panel (please see Supplementary Data for detailed information)

Negative control BI-4481 hits 4 from 44 with >50% inhibition @ $10\mu M$ (HERG, M1/H, PDE4D2, BETA2/HUM).

SELECTIVITY DATA AVAILABLE	BI-5521	BI-4481
SafetyScreen44™ with kind support of & eurofins	Yes	Yes
Invitrogen®	Yes	No
DiscoverX®	No	No
Dundee	Yes	No

Co-crystal structure of the Boehringer Ingelheim probe compound and the target protein.

A crystal structure of GSK-3 complexed with BI-91BS, a close analog of BI-5521, is available (PDB: 6GJO).

References molecule(s)

Pharmacological inhibitors of GSK-3 described in the literature can be classified as either ATP competitive, non-ATP-competitive (allosteric) or substrate competitive inhibitors. Among these, three molecules so far reached clinical trials: the ATP competitive inhibitors AZD1080 and LY2090314 and Tideglusib with a non-ATP-competitive binding mode^{2,4}.

Supplementary data

Selectivity data can be downloaded free of charge from opnMe.

References

- 1. Heckel A., Roth G. J., Kley J., Hoerer S., Uphues I Aryl-containing 5-acylindolinones, the preparation thereof and their use as medicaments **2005**, <u>US Patent 2005/0203104</u>, (BI-5521 corresponds to example 1).
- Palomo V., Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: A patent update (2014-2015) Expert Opin Ther Pat 2017, 27(6), 657–666. DOI: 10.1080/13543776.2017.1259412, PubMed: 27828716.
- 3. Patel P., Woodgett J. R. Glycogen Synthase Kinase 3: A Kinase for All Pathways? *Curr Top Dev Biol* **2017**, 123, 277–302. DOI: 10.1016/bs.ctdb.2016.11.011, PubMed: 28236969.
- 4. Khan I., Tantray M. A., Alam M. S., Hamid H. Natural and synthetic bioactive inhibitors of glycogen synthase kinase, *European Journal of Medicinal Chemistry* **2017**, *125*, 464-477. DOI: 10.1016/j.ejmech.2016.09.058, PubMed: 27689729.
- 5. Palomo V., Perez D. I., Roca C., Anderson C., Rodríguez-Muela N., Perez C., Morales-Garcia J. A., Reyes J. A., Campillo N. E., Perez-Castillo A. M., Rubin L. L., Timchenko L., Gil C., Martinez A. Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases *J Med Chem*

2017, 60(12), 4983–5001. <u>DOI: 10.1021/acs.jmedchem.7b00395</u>, <u>PubMed: 28548834</u>.

6. Gollner A., Heine C., Hofbauer K. S. Kinase Degraders, Activators, and Inhibitors: Highlights and Synthesis Routes to the Chemical Probes on opnMe.Com, Part 1 *ChemMedChem* **2023**, 18(10), e202300031. DOI: 10.1002/cmdc.202300031, PubMed: 36825440.